Initial Stress Measurement of Horonobe Siliceous Rocks by DSCA Method

Masaki Yamaguchi (Hokkaido Univ.), Yoshiaki Fujii (Hokkaido Univ.), Kazuhiro Fukuda (Shimizu Corporation) and Hiroya Matsui (JAEA)

1. Introduction

It is known for the Neogene siliceous rock mass in Hokushin, Horonobe, Hokkaido that there is a region where a rapid change in physical properties along depth is seen (the transition zone)\(^1\). It is thought that such change in physical properties has some influences on the initial stress state. Only the magnitude and direction of the maximum (\(\sigma_1\)) and minimum (\(\sigma_3\)) principal stresses in the horizontal plane were evaluated in the stress measurement by the hydraulic fracturing method\(^9\) (HFM) and no information on 3-dimensional stress state was obtained.

In this study, evaluation of the 3-dimensional stress state was tried applying DSCA method, one of the stress measurement methods using rock core specimens. Two specimens from the transition zone and two specimens from hard shale seam, which is located lower than the transition zone, were sampled from HDB-11\(^13\) and used.

2. Test procedure

Usually an unsaturated cubic specimen is used and strains of 9-12 directions on mutually perpendicular three planes (3-4 directions for each plane) are measured increasing hydrostatic pressure in the DSCA method. However, tests were carried out under the drained condition using cylindrical specimens whose diameter and height were 30 mm and 60 mm, respectively, because it was necessary to use saturated specimen since physical properties of the siliceous rock specimens could be affected by change in water content and also enough effective hydrostatic pressure might not be obtained if a saturated specimen was used. The specimen on which strain gauges were glued was attached to the end pieces through porous metals and was covered with a heat shrinkable tubing. The jacketed specimen was inserted in the ultra compact triaxial cell\(^2\) (Fig. 1). Upper and lower end pieces have small holes and pore water is drained from the holes. The directions of the specimens were identified based on the strike and dip of the neighbor cracks obtained by BHTV log of HDB-11.

3. Example of results for specimens from transition zone (Transition zone 1)

The hydrostatic pressure-strain curves are shown in Fig. 2. The regression lines were evaluated for 4-6 MPa of hydrostatic pressure, \(y\)-intercept was read and the initial stress state was calculated (Table 1). The average \(\sigma_H\) and \(\sigma_S\) are 14.2 MPa and 7.8 MPa, respectively, and the direction of \(\sigma_H\) is N42E.

4. Example of results for specimens from hard shale seam (Hard shale seam 1)

The hydrostatic pressure-strain curves are shown in Fig. 3. The regression lines were calculated for 10-13 MPa for gauges 1 and 2 and 11-14 MPa for gauges 3-6, 8 and 9 for only this specimen to use almost linear parts (Table 2). The average \(\sigma_H\) and \(\sigma_S\) are...
13.7 MPa and 7.9 MPa, respectively, and the direction of σ_{H1} is N104E.

Table 1 Estimation of initial stress (σ_v: Overburden pressure, SD: Standard deviation, σ_e: Effective stress, σ_T: Total stress)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>σ_v (MPa)</th>
<th>SD</th>
<th>σ_e (MPa)</th>
<th>SD</th>
<th>σ_T (MPa)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>1.88</td>
<td>0.18</td>
<td>1.59</td>
<td>0.19</td>
<td>3.47</td>
<td>0.20</td>
</tr>
<tr>
<td>297</td>
<td>1.88</td>
<td>0.18</td>
<td>1.59</td>
<td>0.19</td>
<td>3.47</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 2 Estimation of initial stress

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>σ_v (MPa)</th>
<th>SD</th>
<th>σ_e (MPa)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>1.88</td>
<td>0.18</td>
<td>1.59</td>
<td>0.19</td>
</tr>
<tr>
<td>437</td>
<td>1.88</td>
<td>0.18</td>
<td>1.59</td>
<td>0.19</td>
</tr>
</tbody>
</table>

6. Information of 3-dimensional initial stress state

The evaluated 3-dimensional stresses are shown in Fig. 4 by the stereo projection onto the lower hemisphere ($\bigcirc: \sigma_x$, $\triangle: \sigma_y$, $\Box: \sigma_z$). The results for the transition zone are similar with each other and σ is approximately parallel to the strata and perpendicular to the anticline axis. The results for hard shale seam are not similar with each other.

7. Conclusions

The initial stress measurement for the Neogene siliceous rock were carried out by using DSCA method. There are not significant differences between the hydraulic fracturing method and DSCA results except for the direction of σ_{H1} for transition zone. σ_1 is approximately parallel to the strata and perpendicular to the anticline axis.

References